3D bioprinting uses collagen to bring vascularized tissue one step closer

Using their novel Freeform Reversible Embedding of Suspended Hydrogels (FRESH) 3D bioprinting technique, which allows for the printing of soft living cells and tissues, Carnegie Mellon’s Feinberg lab has built a first-of-its-kind microphysiologic system, or tissue model, entirely out of collagen. This advancement expands the capabilities of how researchers can study disease and build tissues for therapy, such as type 1 diabetes.
Read More

New human ‘multi-zonal’ liver organoids improve injury survival in rodents

One reason why our livers excel at clearing waste from our blood system is that the organ functions according to three key “zones” that perform specific major tasks. So, if scientists hope to create self-growing patches of liver organoid tissue that could help repair damaged organs, it’s important that the lab-grown tissue faithfully reproduce such zones.
Read More

Prototype device uses ultrasound to break up kidney stones

A team from the Universitat Politècnica de València (UPV) and the Spanish National Research Council (CSIC), belonging to the Research Institute for Molecular Imaging Technologies (I3M), has developed, together with the NITIUV Group of the La Fe Health Research Institute (IIS La Fe) in Valencia and the Biomechanics Institute of Valencia, a new device—in the prototype phase—to break up kidney stones.
Read More
Top